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Problem Statement

To predict whether a customer is eligible for loan approval, given customer detail provided
while filling online application form regarding custoemr background and credit history.

*Dataset taken from:

https://www.kaggle.com/ninzaami/loan-predication



Data Preprocessing

13 columns x 614 rows of data

Target Column: ‘Loan_Status’

Numerical Columns included: ‘Applicantincome’, 'Coapplicantincome’, 'LoanAmount’,
'‘Loan_Amount_Term',

e Categorical Columns included: ‘Loan_ID', 'Gender', 'Married', 'Dependents', 'Education’,
'Self Employed', 'Credit_History', 'Property Area', 'Loan_Status'



Data Preprocessing

e Cleaning numerical columns:
O OQutliers for numerical columns (using z score>3 as a threshold) were removed
o Missing values were filled using median
o After train-test split, feature scaling was utilized to build a better machine learning
model later
e Cleaning categorical columns
o Missing values were filled using mode
o Label Encoder used to transform data



EDA
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EDA

Applicant Income was skewed left, with most (75%) of applicants earning <$5704
Of the data...
o 81.5% were from male customers
65.2% were married customers
59.3% had 0 dependents
77.7% were graduates
86.7% were not self-employed
85.7% had a credit history
o 69.2% had their loan approved
Distribution amongst customers’ property areas was roughly equal
Customer’s Income had a high correlation with Loan Amount (0.605)

o O O O O



Model accuracy and evaluation: Logistic Regression

True label

Accuracy: 0.83, AUC = 0.710 (closer to 1 is better)

False Positive Rate: 23/150=15.33%
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Logistic Regression (Hyperparameter Tuning
Attempt)

e Attempts to adjust model parameters were unsuccessful in achieving higher accuracy



Model accuracy and evaluation: Decision Tree

e Accuracy: 0.76, AUC = 0.707 (closer to 1 is better)

e False Positive Rate: 23/150=15.33% Lo ROC Curve
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Decision Tree (Hyperparameter Tuning Attempt)

Adjusted parameters in attempt to find higher
accuracy

Highest Accuracy for best model found: 0.83,
AUC = 0.707 (closer to 1 is better)
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Credit_History <= 0.5
gini = 0.435
samples = 450
value = [144, 306]
class = Yes

gini = 0.336
samples = 384
value = [82, 302]
class = Yes




Suggested Model

While the parameter-adjusted decision tree model achieved an accuracy score similar to the
logistic regression model (accuracy = 0.83 for both), the decision tree model would not be
recommended as the model’s prediction relies on one key variable: customer’s Credit History
o Using on a model that relies on only one key variable would fail to make use of other
variables containing potentially useful customer data
o Relying on only one variable for prediction brings up practical issues too (e.g.missing data)
o Furthermore...
m Credit History data was heavily skewed (85.7% of customers had a credit history
while only 14.3% did not)
m Credit History data also had the most missing values out of all variables (n=49), which
was then filled with the median value i.e. having a credit history



Suggested Model
e Meanwhile, the logistic regression model factors in multiple variables of customer data
into its regression equation to churn out predictions

e Hence, the logistic regression model would be the recommended model for loan approval
prediction



Dataset Limitations and Future Directions

e A more representative sample of customer data, eg for certain customer demographics
that were heavily skewed in the current dataset (e.g. Gender, Married, Graduates, Credit
History), may enable the creation of a more accurate machine learning model across
demographics
Target Variable (“Loan_Status” was not equally distributed which may affect modelling
Alternative prediction models that were not evaluated in this project can be explored (e.g.
K-neighbours, Random Forest)



