DATA SCIENCE CAPSTONE PROJECT

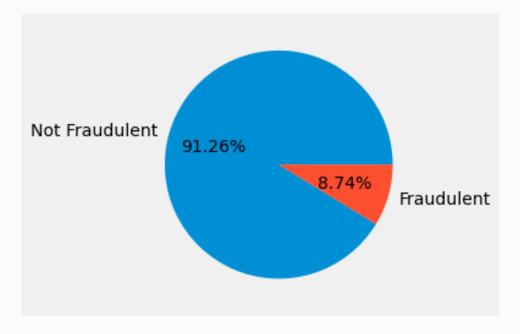
Credit Card Fraud

Problem Statement

More credit card payments are transacted in our daily life due to various reasons such as cashback benefit, going cashless, online purchase and installments. However, credit card transactions may be susceptible to fraud.

The objective of this project is to build a machine learning model for fraud prediction in credit card transactions.

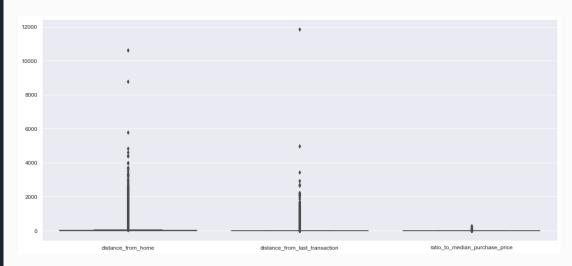
Dataset Details

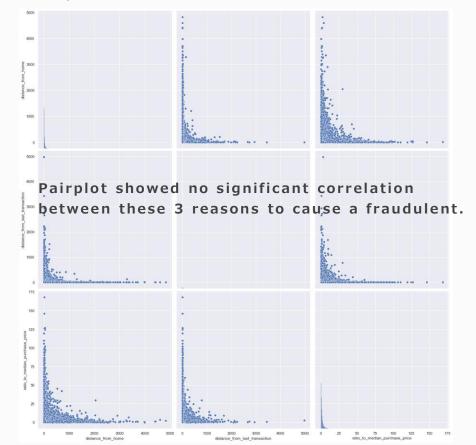

There are 1mio rows of data with 7 different categories for fraud detection.

Columns	Description	Type of Data	
distance_from_home	the distance from home where the transaction happened.	Numerical	
distance_from_last_transaction	the distance from last transaction happened.	Numerical	
ratio to modian purchase price	Ratio of purchased price transaction to median purchase	Numerical	
ratio_to_median_purchase_price	price.	Numericai	
repeat_retailer	Is the transaction happened from same retailer.	Categorical	
used_chip	Is the transaction through chip (credit card).	Categorical	
used_pin_number	Is the transaction happened by using PIN number.	Categorical	
online_order	Is the transaction an online order.	Categorical	

Datasets source: Credit Card Fraud | Kaggle

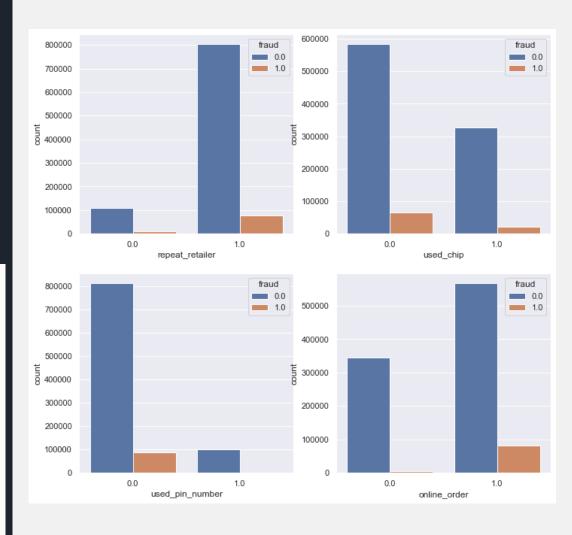
Data Exploration

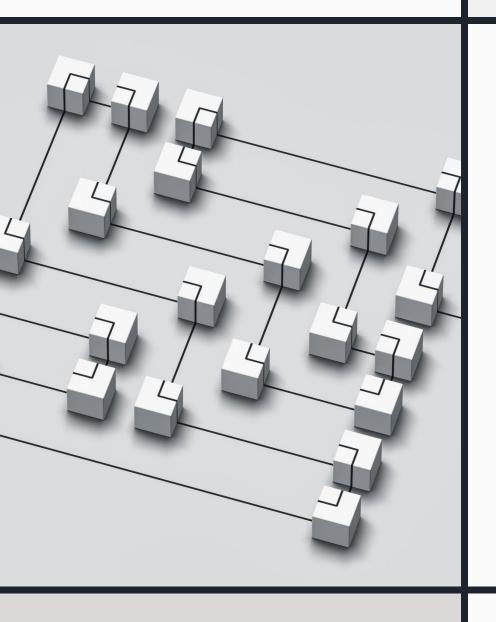

From the dataset, total of 8.74% are suspected fraudulent cases.


Data Exploration on Numerical Data Type

Investigation of outlier using boxplot, dropping outlier, and find correlation

between numerical data type.



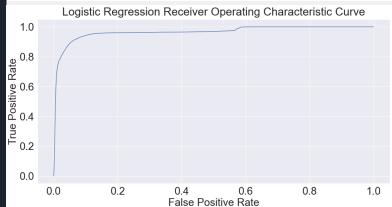

		Count		
			Not	
Columns	Criteria	Fraudulent	Fraudulent	
distance_from_home	>5000	1	2	
distance_from_last_transaction	>5000	0	1	
ratio_to_median_purchase_price	>200	1	1	

Data Exploration on Categorical Data Type

From the countplot, fraud occurred on repeat retailer, transaction without using chip, transaction without using pin number and online order.

Selection of Machine Learning Model

Since numerical data type does not have significant correlation to the fraudulent, the machine learning model I adopt is Logistic Regression due to it is more accurate to predict categorical data type (4 columns of data are categorical. Logistic Regression model is compared with Decision Tree.

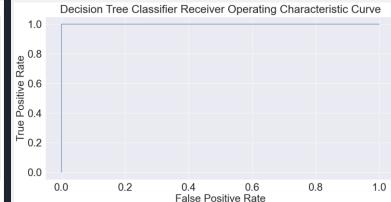

Machine Learning Model Results Comparison

Comments:

Both machine learning model gave similar result (AUC close to 1.0). Decision Tree is a better classifier for fraud prediction.

Logistic Regression Model Result

LogisticRegression() Accuracy: 0.9586031953439845 precision recall f1-score support 0.0 0.96 0.99 0.98 273877 1.0 0.89 0.60 0.71 26122 accuracy 0.96 299999 macro avg 0.93 0.79 0.85 299999 weighted avg 0.96 0.96 0.95 299999


AUC: 0.965

Decision Tree Model Result

DecisionTreeClassifier()

Accuracy: 0.999989999666666

accuracy.		ision		f1-score	support
0.	0	1.00	1.00	1.00	273877
1.	.0	1.00	1.00	1.00	26122
accurac	cy			1.00	299999
macro av	/g	1.00	1.00	1.00	299999
weighted av	/g	1.00	1.00	1.00	299999

AUC: 0.999